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Abstract

Under mild assumptions about the interarrival distribution, we derive a modi�ed version of

the Birnbaum-Saunders distribution, which we call the tBISA, as an approximation for the true

distribution of count data. The free parameters of the tBISA are the �rst two moments of the

underlying interarrival distribution. We show that the density for the sum of tBISA variables

is available in closed form. This density is determined using the tBISA's moment generating

function, which we introduce to the literature. The tBISA's moment generating function addi-

tionally reveals a new mixture interpretation that is based on the inverse Gaussian and gamma

distributions. We then show that the tBISA can �t count data better than the distributions

commonly used to model demand in economics and business. In numerical experiments and em-

pirical applications, we demonstrate that modeling demand with the tBISA can lead to better

economic decisions.
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can still be obtained from interarrival data. We demonstrate both estimation approaches.

Because many applications require that counts be summed, we investigate the additive properties

of the tBISA. For example, the interarrival distribution may change (e.g., by time-of-day, day-of-

the-week or season), thereby violating the assumption that arrival times are identically distributed.

Another example involves dynamic inventory models. Determining the optimal policy parameters

in some dynamic inventory models requires aggregating demand over the number of periods in the

delivery lag.

Determining the sum of tBISA random variables requires that we derive the BISA's moment

generating function (mgf), which appears to have been previously undiscovered (interestingly, the

mgf of the log-BISA, also called the sinh-normal, is known, albeit in terms of modi�ed Bessel

functions of the third kind [15]). The BISA mgf reveals that the distribution can be represented as

a mixture, in equal proportions, of (i) an inverse Gaussian and (ii) the same inverse Gaussian plus



central limit theorem, the probability of the count C being n or less is
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where �(�) is the cumulative distribution function for the standard normal. Approximating the

discrete count n with a continuous variable x � 0, we obtain the density
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By comparison, Birnbaum and Saunders [2] use n instead of (n+1) when modeling the number of

cycles until failure (this is because n = 0 is not a possibility in their model; it is in ours), so their

density is
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Figure 1: tBISA density for T = 500,� = 20, �= 10, 20, 30, 40

this approximation is very good. Thus, while the next proposition states approximate results, the

results are nearly exact for practical purposes.

Proposition 1. Let the mean and standard deviation of the (stationary) interarrival distribution

be � and �, respectively. Then the �rst three moments about the mean for the count distribution (5)

are

(i) E(C) �= T
� � :5 + �2

2�2

(ii) E(C � E(C))2 �= 5�4

4�4 + T
� �

�2

�2

(iii) E(C � E(C))3 �= 11�6

2�6 + T
� �

�4

�4

Not surprisingly, result (i) is 1=2 unit less than the corresponding result in [2] while result (ii)

is identical. Result (iii) can be obtained from [9] after a little algebra. We note that the moment

formulas in Proposition 1 are all functions of just two fundamental quantities, the coe�cient of

variation of the interarrival distribution, �=�, and the ratio T=�. Moreover, the moments are all

increasing functions of these two terms. In particular, the third moment about the mean is always

positive so the count distribution is always positively skewed.

Proposition 2. The density (5) is unimodal, and its mode is less than its median which is less

than its mean.

When a tBISA random variable (5) is log-transformed, it produces a symmetric, unimodal

distribution that resembles a normal distribution. This result is analogous to that obtained in [16]

for the BISA distribution (4).
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Proposition 3. Suppose that the count C has the density (5). Then Y = ln(C+ :5) has a unimodal

distribution that is symmetric about ln(T=�).

The proof of Proposition 3 is straightforward, and the proposition provides a theoretical basis

for modeling the logarithm of count data, as is customarily done in many applications in economics

and business. It is worth noting, however, that the tBISA distribution retains an important advan-

tage over logarithmic distributions�it is derived directly from the interarrival distribution whose

moments de�ne its free parameters.

3. SOME COMPARISONS WITH EXACT COUNT DISTRIBU-

TIONS

We now assess the accuracy of the tBISA approximation. Under certain assumptions, the probability

that the count C equals n can be computed exactly so a comparison between the tBISA distribution

(5) and a known count distribution is possible. The primary requirements for the interarrival

distribution are that (i) the interarrival distribution has nonnegative support and (ii) the distribution

for the sum can be determined in a convenient numerical form. We consider two such cases here.

The �rst is a gamma interarrival process, which nests the exponential, Erlang, and chi-square as

special cases. The second is a uniform interarrival process. For comparing �ts, we report the mean

and variance of each distribution (exact count distribution vs. tBISA) as well as the maximum

absolute value of the di�erence, Dmax, between the cdf of the exact count distribution and the cdf

of the tBISA.

3.1 Gamma Interarrivals

We follow the development of Winkelmann [19]. The time between arrivals is gamma distributed

with shape parameter k >0 and scale parameter � >0. The time interval is [0,T ]. The mean and

variance are k� and k�2, respectively. The interarrival time has probability density

f(� ; k; �) =
1

�k�(k)
�k−1 exp (��=�) for � > 0 and k; � 2 R+ (6)

De�ne

G(nk; T=�) =
1

�(nk)

T=��

0

unk−1 exp(�u)du: (7)

The count distribution on the interval [0,T ] is

P (C = n) = G(kn; T=�)�G(k(n+ 1); T=�) (8)

for n = 0, 1, 2,. . . .

Figure 2 illustrates the exact count distribution for k = 1=2



Gamma Interarrivals Uniform Interarrivals
k = 1=2, �= 40 k= 1, �= 20 k= 2, �= 10 T = 5 T = 10

�count 25.5 25 24.75 9.667 19.660
�tBISA 25.5 25 24.75 9.66667 19.6667
�count 7.053368 5 3.544361 1.886 2.602
�tBISA 7.416198 5.123475 3.579455 1.86339 2.60875
Dmax .03762 .02660 .01881 .0029 .0015

Table 1: tBISA approximation compared to exact count distributions



Figure 3: tBISA distribution (solid line) vs. exact count distribution (dashed line) assuming uniform
interarrivals.

3.2 Uniform Interarrivals

Assume interarrival times are uniform U [0,1]. The mean and variance are 1/2 and 1/12, respectively.

Then the density for Sn = U1 + U2 + � � � � �Un is

fn(x) =
1

2 � (n� 1)!

nX
k=0

(�1)k
 
n

k

!
(x� k)n−1sgn(x� k) 0 � x � n; (9)

which can be obtained after some algebra from Theorem 1 in [3]. From (9) one can compute the

exact probability of the count equaling n for the time interval [0,T ]

P (C = n) = P (Sn+1 � T )� P (Sn � T ) =
� n+1

T
[fn+1(x)� fn(x)]dx: (T � n+ 1) (10)

Comparisons of the tBISA density and fn(x) for T= 5, 10 are shown in Figure 3 and their �ts are

compared in Table 1. In both cases, the tBISA approximates the exact count distribution extremely

well.
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4. ADDITIVE PROPERTIES

In many applications, summing random counts is important. In economics and business applications,

for example, the demand distribution may vary over time (e.g., by time-of-day or day-of-the-week)

so demand over the speci�ed period can be represented as the sum of demands over disjoint subin-

tervals. Also, many inventory problems require determining the distribution of demands
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The mgf of the BISA distribution, MBS(t), can be expressed in terms of the mgf of the inverse

Gaussian
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Lebesgue's Dominated Convergence Theorem to the di�erence quotients.)
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This establishes part (a). For part (b), the mgf in (a) can be written as
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which characterized the BISA distribution as a mixture, in equal proportions, of an inverse Gaussian

and a reciprocal inverse Gaussian (the distribution of 1/X where X � inverse Gaussian). Moreover,

our mixture interpretation allows us to analyze sums of independent BISA random variables having

di�erent parameters Ti, �i, and �i, something Desmond's interpretation does not facilitate. Finally,

our mixture result implies that the reciprocal inverse Gaussian is equivalent to the sum of an inverse

Gaussian and a gamma; this will be revisited after Theorem 2.

Our discussion now turns to summing BISA random variables. The summation requires the use

of con�uent hypergeometric functions, which are general solutions of the di�erential equation

z
d2w

dz2
+ (b� z)dw

dz
� aw = 0

introduced and analyzed by Kummer [12]. One solution is the
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Theorem 3. Let Xi be a random variable with BISA density (4) and parameters Ti, �i, and �i.

Assume �i and �i adhere to property 1 and the Xi are independent. Then
nP
i=1
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Observe that the new parameters satisfy �=� = v due to property 1. Then each term in the

summation of (33) (ignoring the mixture weights) takes the general form

exp
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which is the mgf for the sum of (i) an inverse Gaussian with parameters � = T 2=�2 and ! = T=�

for T , � and � as de�ned in (34) and (ii) an independent gamma with shape parameter j/2 and

scale parameter � = 2�2=�2 = 2v2. By Theorem 2, each of these has a density fj involving the

con�uent hypergeometric function of the second kind,
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The density for the sum of independent BISA random variables whose interarrival distributions

have the same coe�cient of variation is therefore the mixture

f(x) = (1=2)n f0(s) +
nX
j=1

(1=2)n
 
n

j

!
fj(s): (37)

This is a closed form representation involving con�uent hypergeometric functions.

Clearly, the shape of the �nal density in Theorem 3 is determined by the shape of the individual

densities fj(x). To understand how T , �, and � a�ect the overall shape, we graphed the individual

densities j = 0, 1, 2, 3, 4, 5 for two numerical cases: when T = 500, � = 20, and � = 10 (Figure

4); and when T = 500, � = 20, and � = 40 (Figure 5). Mixing the two leftmost densities in equal

proportions (.5, .5) corresponds to the BISA distribution. Mixing the three leftmost densities in

proportions (.25, .50, .25) corresponds to adding two BISA distributions. Mixing the four leftmost

densities in proportions (.125, .375, .375, .125) corresponds to adding three BISA distributions, etc.

As one might expect, the individual densities exhibit greater spread as the coe�cient of variation

increases from v = .5 (Figure 4) to v= 2 (Figure 5). Moreover, the expected values for the fj(s)
increase with v as well. This result could be obtained directly by considering the expected value

formula for a single BISA random variable (see Proposition 1).

Recall that the mgf for the tBISA introduces a factor e−t=2 into the expression of Theorem 1,

so the mgf for the sum of m such tBISAs includes an additional factor e−mt=2. This amounts to

shifting all of the mixture densities in Theorem 3 to the left by m/2 units. We also note that the

parameters �, �, and T de�ned in Theorem 3 are not the only possible choices. These were chosen

because they are easy to interpret. The proof of Theorem 3 goes through for other choices provided

(i) (�=�) = v and (ii) T=� =
nP
i=1

Ti=�i. This implies that the density in Theorem 3 is governed by

two unknown parameters provided the number of terms in the sum, n, is known. Alternatively, one
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could think of the parameter n as a third unknown parameter in a generalized tBISA distribution.

Figure 4: Mixture densities fj(s), j = 0, 1, 2, 3, 4, 5 (dashed lines); density of sum f(x)(solid line)
for T = 500, � = 20, � = 10.

5. APPLICATIONS

5.1 An Empirical Test: Fitting the tBISA to Demand Data

Additional tests are required to determine the suitability of the tBISA as an approximation to the

distribution of count data. Our testing will focus on demand, the count of individual purchases,

which is commonly analyzed in economics and business problems. Accordingly, we use the term

�interpurchase� as a more descriptive synonym for �interarrival� throughout this discussion. Our

�rst test involved �tting the tBISA to actual demand data. We obtained demand data for the

best-selling carbonated beverage at a local convenience store. Three hundred and eighty-�ve days

of data were available. We estimated the demand distribution using daily sales counts so that the

input data was consistent across the candidate distributions we considered. It is interesting to note

that the interpurchase distribution was not stationary over the entire day, so the assumptions under

which we derived the tBISA were not, strictly speaking, met. This means the conditions for �tting

the tBISA were less than ideal.

The normal and lognormal distributions are most commonly used to �t demand data in practice.

We therefore �t these two distributions plus the Poisson and tBISA. All but the tBISA are easily �t

using closed-form maximum likelihood estimates. The tBISA does not have closed form maximum

likelihood estimates (these can be found via numerical optimization) but does have closed form
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Figure 5: Mixture densities fj(s), j = 0, 1, 2, 3, 4, 5 (dashed lines); density of sum f(x)(solid line)
for T = 500, � = 20, � = 40.

method of moments estimates which we use instead (see appendix). We computed Dmax for each

distribution as compared to the empirical demand distribution. We also computed Dmax restricted

to the top decile of the empirical distribution because the upper tail of the demand distribution is

typically most critical in business and economics applications. The results are summarized in Table

2, which clearly shows that the tBISA �ts the carbonated beverage data better than the commonly

used distributions. This is evident both for the entire distribution and for the upper tail.

Normal Lognormal tBISA Poisson
Dmax .075 .052 .042 .087
Dmax



where T is the time period, �I is the mean interpurchase time, �I is the standard deviation of the

interpurchase time, and � is the cdf for the standard normal distribution. The optimal Q therefore

satis�es

[T � (Q+ 1=2)�I ]=[�I
q
Q+ 1=2] = z1−�; (39)

where z� = �−1(�). Using a little algebra and the fact that z1−� = �z� , we determine that the

optimal Q is

Q∗ = T=�I � 1=2 + z2
�(�I=�I)2 + 1=2

q
(z��I=�I)4 + 4(z��I=�I)2T=�I : (40)

Observe that this quantity depends only on parameters of the interpurchase distribution (T=�I ,

�I=�I) and the same critical value one would use if the distribution of demand was assumed to be

normal.

We applied the tBISA to the semiconductor demand data used by Gallego [5]. Sample statistics

for weekly demand are �xD = 207 and s2
D = 210681. Assuming an overage cost of h = $2 and a

shortage cost of s = $5, the optimal order quantity based on the empirical distribution of demand

is approximately 100 units, which leads to an optimal pro�t of $69. In contrast, the optimal order

quantity based on a normal distribution leads to a loss of $291. Gallego found the lognormal distri-

bution was a much better alternative. Using the method of moments to �t a lognormal distribution

to the demand data, he determined the optimal order quantity to be 181 with a corresponding pro�t

of $29�a vast improvement over the normal distribution.

Distribution Optimal Q Optimal Pro�t
Normal 467 -$291
Lognormal 181 $29
tBISA 137 �$50.72
Empirical 100 $69

Table 3: Comparison of optimal inventory levels and pro�ts

Using the same data and cost assumptions, we found the tBISA distribution produced materially

better results. As Gallego did for the lognormal distribution, we used the method of moments (see

appendix) to �t the tBISA. This results in estimates of T=�I = 2:78525 and �2
I=�

2
I = 409:42949

(note that these values are calculated from the demand data, not from interpurchase times). The

optimal order quantity using these estimates is Q∗ = 137 and the optimal pro�t is at least $50.72

(this follows from concavity of the pro�t function; we cannot be more precise without the full dataset

which is no longer available). The results are summarized in Table 3.

5.3 Applications to Dynamic Inventory Models

The distribution of demand also plays an essential role in more complicated models of inven-

tory/production. In practice, the true distribution is typically unknown (see [6]) so selecting a

robust approximation is important. In some inventory/production applications, one must deter-
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mine aggregate demand over multiple periods and so distributions that have additive properties

are preferred. To determine if the tBISA holds promise in such settings, we conduct a simulation

experiment using demand generated from a gamma interpurchase distribution. This interpurchase

distribution was selected because it allows for over-, under-, and equi-dispersion in the correspond-

ing count (demand) distribution and because one can compute probabilities for the exact count

distribution using the incomplete gamma (see equations 7 and 8).

The distribution of aggregate demand is a fundamental concern in dynamic inventory models. In

these models, one considers the short and long term costs of inventory over a multi-period horizon.

Typical inventory costs include (i) the cost of ordering/purchasing inventory, (ii) the cost of holding

excess inventory, and (iii) the the cost of either backlogging an item (if excess demand is backordered)

or losing a sale (if excess demand is lost). In some dynamic models, it is possible to describe in

compact form the optimal order/purchase decision�otherwise termed the optimal policy



a single integral.

We considered three possible parameter combinations for gamma distributed interpurchases:

(k; �) = (.5, 40), (1, 20), and (2, 10). Each combination implies a mean interarrival of 20; stan-



n k � Normal Lognormal tBISA-C tBISA-I

10 0.5 40 4.02 4.74 4.1 2.46
10 1 20 1.88 2.16



N k � Normal Lognormal tBISA-C tBISA-I

10 0.5 40 5.9 6 5.88 4.92
10 1 20 3.4 3.46 3.66 3.34
10 2 10 2.82 2.7 2.62 2.68
25 0.5 40 4.14 3.94 4.72 3.54
25 1 20 1.8 1.82 2.02 1.88
25 2 10 2.3 2.26 2.04 1.94
50 0.5 40 2.9 2.96 3.86 2.38
50 1 20 1.44 1.44 1.54 1.42
50 2 10 1.94 1.88 1.44 1.32
100 0.5 40 2.04 1.92 2.72 1.78
100 1 20 0.88 0.92 1.24 1.04
100 2 10 1.6 1.56 1.3 0.92
200 0.5 40 1.72 1.6 2.4 1.3
200 1 20 0.82 0.84 0.96 0.9
200 2 10 1.6 1.54 0.96 0.56



third extension, to address nonstationarity in the interarrival distribution, would be to partition

the interarrivals into distinct groups or segments. For example, interarrivals times during di�erent

parts of the day (e.g., daytime versus nighttime), di�erent days-of-the-week (e.g., weekday versus

weekend), or di�erent seasons of the year could be partitioned and their respective count distribu-

tions �t separately. Alternatively, interarrival times could be separated based on a criterion that

does not depend on time, e.g., cash customers versus credit customers (here we would measure

the time between cash purchases and the time between credit purchases). In each case, the total

demand would be the sum of counts for the di�erent groups or segments. In other applications, the

number of segments might not be known, in which case n, the number of segments, becomes a free

parameter in Theorem 3.
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A limitation of this method is that it fails if s2
D=(�xD+1=2)2 � 5, thus a di�erent estimation method

(e.g., maximum likelihood) would be required. Fortunately, this violation rarely occurs in practice,

and so the method of moments should be broadly applicable.
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