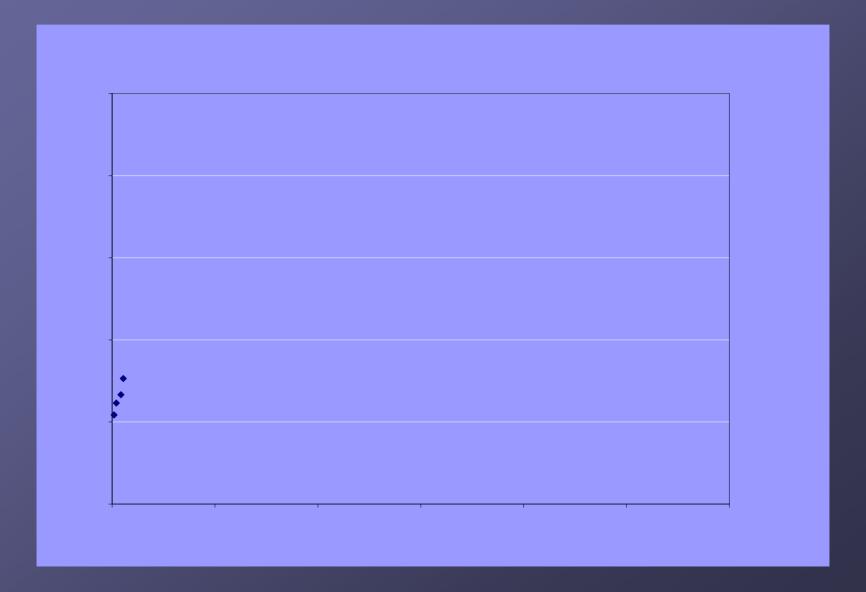
Engineering Geothermal Systems in Oil and Gas Reservoirs

Susan Petty
Bill Livesay
Black Mountain Technology

Energy from the Earth's Heat


- Hydrothermal systems
 - Naturally high permeability
 - Can be developed without stimulation Usually at shallow depths <3 km
- Conductive heat energy

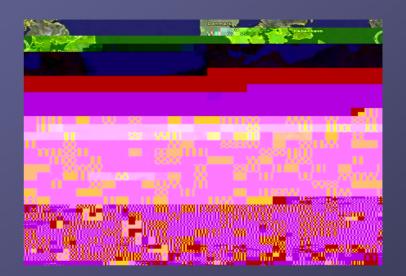
The Geothermal Resource in Oil and Gas Settings

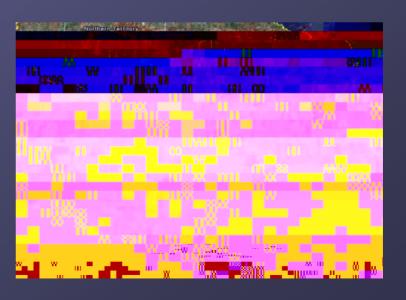
Size of the Resource

Supply of EGS Power at Cost

EGS in Oil Fields

 Oil and gas wells provide data for geothermal development


EGS in Oil Fields


Europe

- Soultz
- Landau
- Grosse Schönebeck
- Unterhaching

Australia

- Cooper Basin
- Paralana GreenEarth Energy
- Hot Rock Ltd
- Geogen VictoriaT
- Torrens Energy Ltd
- Granite Power

Resource Development

- Scenario 2 Drill New Wells
 - Benefits
 - Large size borehole can be drilled to maximize flow rates and accommodate a pump
 - Well can be completed in hot water zones
 - Temperature vs. Depth can be optimized
 - Water already stored in sedimentary rocks
 - Can be drilled to reach higher temperatures in underlying crystalline rocks
 - Drawbacks
 - Deep wells can be very expensive
 - Drilling risk must be considered
 - May not have data in target zone

Enhancing Permeability in Oil Fields

Flow Profile & Significant Fracture Apertures

Openhole GPK-3 (4500 m - 5020 m)

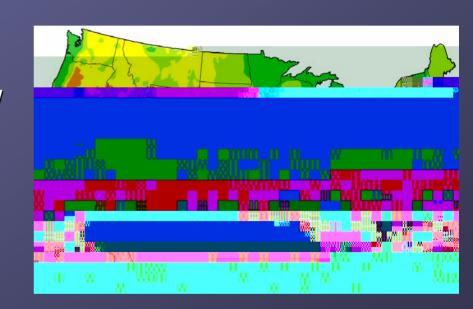
Flowrate (l/s)

10 30 30 40 50 40

Economics of EGS in Oil Fields

- Scenario 1 Wells of opportunity assumptions
 - Depleted oil field with 1000 psi overpressure
 - Wells 12,000 ft deep with 5" completion
 - Temperature 300°F
 - Build 50 MW plant -\$110,000,000
 - Need 117 wells!
 - Competed above primary hot water reservoir

Economics of EGS in Oil Fields


- Scenario 2 Drill new wells assumptions
 - Dry holes in area of soft geopressure ~1000 psi overpressure
 - Wells 12,000 ft deep with 9 5/8" completion
 - Temperature 300°F
 - Build 200 MW capacity 30 wells for \$190,000,000
 - 200 MW binary plant for \$220,000,000
 - Drill and complete with screen and gravel pre-pack
 - Stimulate to achieve higher flow rates
 - Pumped with 700 HP motor
 - Maximum flow rate 1500 gpm
 - Cost of Power 8.07 ¢/kWh

Reality Check EGS What would need to happen to make EGS a reality?

- Reduce the cost of power through technology improvement and learning by doing
 - Increase flow rate per producer by improving stimulation methods
 - Reduce drilling cost by reducing number of casing intervals, improving rate of penetration and reducing risk
 - Improve conversion efficiency
- Identify high temperature oil fields with potential for high volume water production
- Develop a commercial project with DOE/industry in at least two areas with different geology

Reaching the Goal

- To get 1000 MW of EGS power on line we need:
 - 1 well in 3 months, average 5 MW per well
 - 16 rigs drilling for three years
 - 4 sites with 250 MW potential
 - Identify fields with declining production and large numbers of wells that can be recompleted.
 - Identify large areas of uniform hot rock at reasonable depth from O&G drilling data
 - Use hot oil/gas fields to get data and starting points for projects

Technology gaps and barriers

- Need reliable methods to increase the fractured heat exchange area without inducing felt seismic events or making short circuits
- Need to divert stimulation to zones that have been less affected

Q

Future Work to Overcome Gaps and Barriers