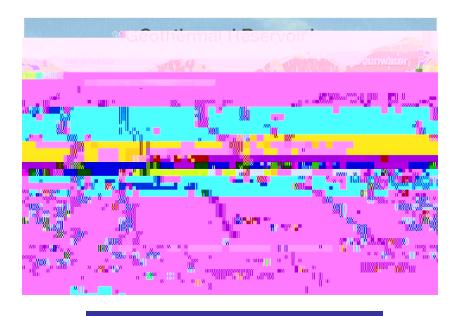
Enhanced Geothermal Systems (EGS): Comparing Water and CO₂ as Heat Transmission Fluids

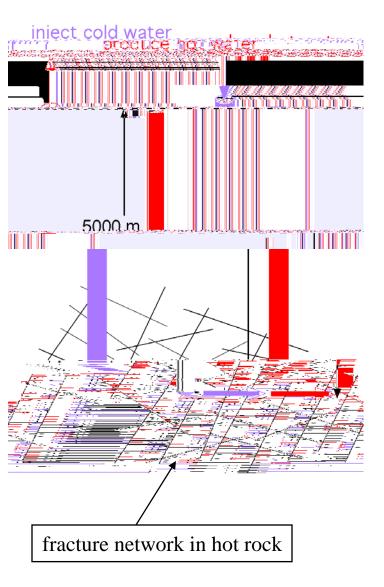
Karsten Pruess

Earth Sciences Division
Lawrence Berkeley National Laboratory


U.S. Geothermal Resources are Huge

Heat content in subsurface rocks to 6 km depth, relative to ambient temperature

(Dave Blackwell, SMU)


Why is Geothermal Energy Contribution so Small?

- Geothermal energy extraction is currently limited to hydrothermal systems (the "low-hanging fruit").
- There is a vast store of geothermal heat that is difficult to recover (hot rocks lacking fluid and permeability).
- How can the essentially inexhaustible heat in deep geologic formations be tapped and transferred to the land surface for human use?

Source: Geothermal Education Office (GEO) http://www.geothermal.marin.org/

Enhanced Geothermal Systems (EGS)

- Artificially create permeability through hydraulic and chemical stimulation.
- Transfer heat to the land surface by circulating water through a system of injection and production boreholes.
- Experimental projects in U.S., U.K., France, Japan, Australia, Sweden, Switzerland, Germany.
- EGS is currently not economically viable; the chief obstacles are:
 - Ø dissolution and precipitation of rock minerals, that may cause anything from short-circuiting flows to formation plugging
 - Ø large "parasitic" power requirements for keeping water circulating
 - Ø water losses from the circulation system
 - Ø inadequate reservoir size heat transfer limitations
 - Ø high cost of deep boreholes (5 km)

How about using CO₂ as Heat Transmission Fluid?

property	CO_2	water
chemistry	poor solvent for rock minerals	powerful solvent for rock minerals: lots of potential for dissolution and precipitation
fluid circulation in wellbores	highly compressible and larger expansivity	low compressibility, modest expansivity
	==> more buoyancy, lower parasitic power consumption	==> less buoyancy
ease of flow in reservoir	lower viscosity, lower density	higher viscosity, higher density

heat transmission smaller specific heat larger specific heat

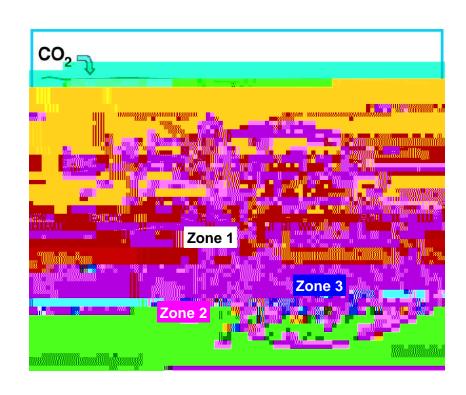
Favorable properties are shown **bold-faced**.

EGS-CO₂ Issues

- Effectiveness of CO₂ as a heat transfer medium.
- Other processes induced by CO₂, that may affect feasibility and sustainability of EGS with CO₂ (chemical reactions, corrosion).
- Can we make an EGS-CO₂ reservoir? (Circulate CO₂ to remove the water.)
- Energy conversion system (binary plant w/ heat exchanger; directly using CO₂ on the turbines)
- Economics.
- Fluid lost = fluid stored?

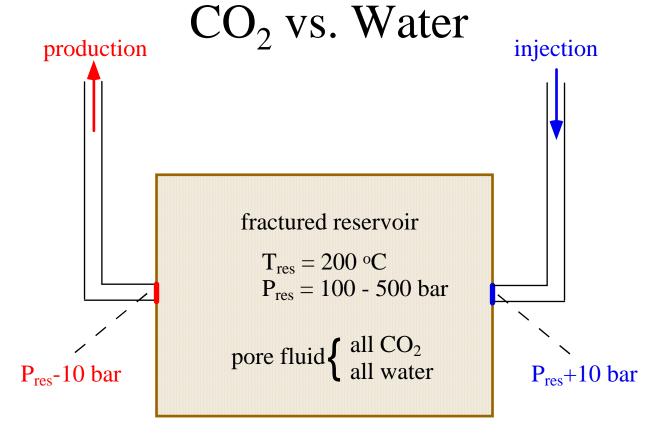
General Makeup of a CO₂-Based EGS Reservoir

Zone 1


Central zone and core of EGS system, where most of the fluid circulation and heat extraction is taking place. This zone contains supercritical CO₂; all water has been removed by dissolution into the flowing CO₂.

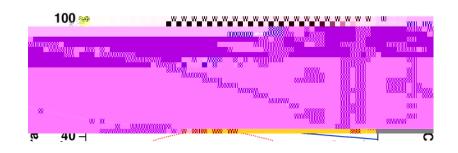
Zone 2

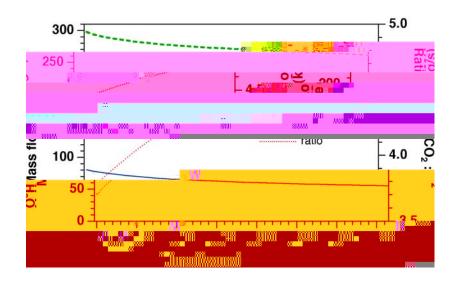
An intermediate region with weaker fluid circulation and heat extraction, which contains a two-phase mixture of CO₂ and water.


Zone 3

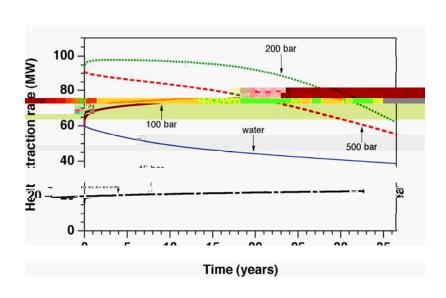
The outer region affected by EGS activities. The fluid is a single aqueous phase with dissolved CO₂.

(after Christian Fouillac et al., *Third Annual Conference on Carbon Capture and Sequestration*, Alexandria, VA, May 3-6, 2004)

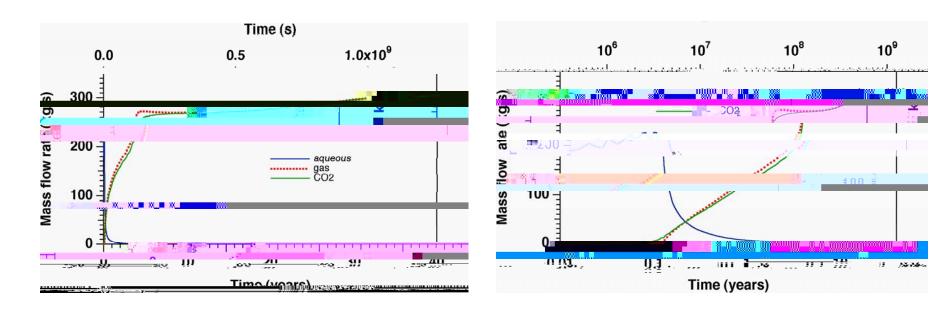

Comparing Operating Fluids for EGS:



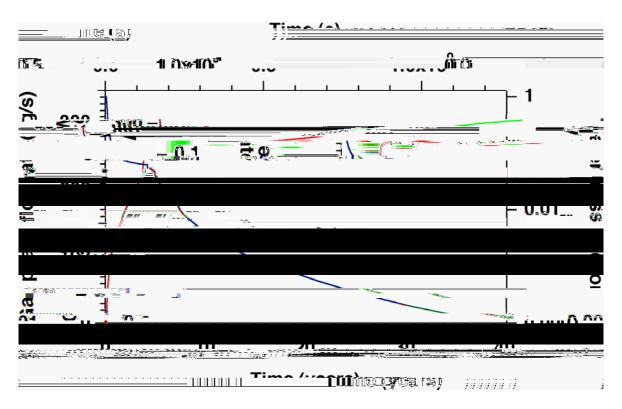
Ø monitor mass flow, heat extraction rates


Reference Case

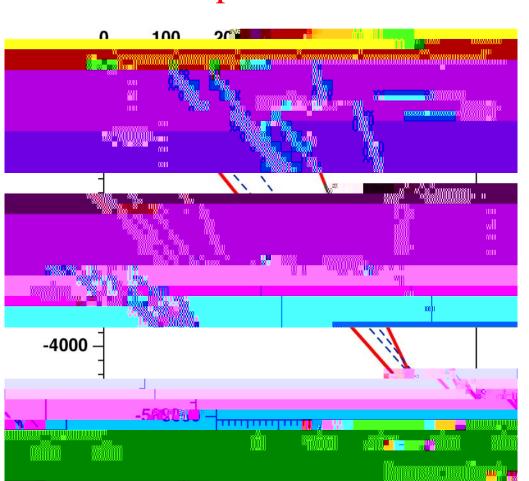
$$T_{res} = 200 \, ^{\circ}C, \, P_{res} = 500 \, bar, \, T_{inj} = 20 \, ^{\circ}C$$



Simulation Results for Different Reservoir Pressures at T = 200 °C


Fluid Mobility

Injecting CO₂ into an Aqueous System


- At early time (0.1 year), produce single-phase water
- This is followed by a two-phase water-CO₂ mixture (0.1 2.5 yr)
- Total production rate during two-phase period is low due to phase interference
- Subsequently produce a single supercritical CO₂-rich phase with dissolved water

Rate and Composition of Produced CO₂

Wellbore Flow: CO₂ vs. Water

Pressure difference between production and injection well

 CO_2 : 288.1 - 57.4 = 230.7 bar

water: 118.6 - 57.4 = 61.2 bar

CO₂ generates much larger pressures in production well, facilitating fluid circulation.

CO₂ Storage Capacity

- Need a mass flow of approximately 20 tons of CO₂ per second, per GW electric power capacity.
- Expect a fluid loss rate of order 5%, or 1 ton per second of CO₂ per GW of installed EGS capacity.
- This is equivalent to CO₂ emissions from 3 GW of coal-fired power generation.
- The MIT report (2006) projects 100 GW of EGS electric power by 2050.
- 100 GW of EGS with CO₂ would store 3.2 Gt/yr of CO₂, approximately

Power Generation from CO₂-Based EGS

- One option is **binary conversion** technology, using similar equipment as water-based systems.
- Alternatively, it may be possible to **directly feed the produced CO₂** to the turbines. This may be possible because supercritical CO₂ without admixed liquid water is not corrosive to metals.
- Direct expansion of CO₂ in the turbines would avoid otherwise inevitable and irreversible heat losses in a heat exchanger.
- However, the produced

Path Forward*

- Fluid-rock reaction experiments with supercritical CO₂
- Laboratory flow experiments for water-CO₂ mixtures and pure anhydrous CO₂
- Modeling of fluid flow, heat transfer and rock-fluid interactions (chemical/mechanical)
- Design studies for a field pilot test of EGS with CO₂

Concluding Remarks

- Water-based enhanced geothermal systems (EGS) face difficult hurdles to (1) achieve adequate heat extraction rates, and (2) maintain injectivity and heat extraction performance in the face of strong rockfluid interactions.
- CO₂ has attractive properties as a heat transmission fluid for EGS.

- The fluid produced from an EGS operated with CO₂ will change from initially water (1 month), to a two-phase aqueous-CO₂ mixture (a few years), to scCO₂ with dissolved water of order 0.1 wt.-%.
- Use of CO₂ as heat transmission fluid for EGS looks promising and

Reactivity of Rocks for scCO₂

Rock type

Characteristics

granite \emptyset generally high in SiO₂, low in carbonates

Ø limited surface area and reactivity of mineral grains

sandstone Ø may have carbonate cements